Characterization of Acetonitrile-Tolerant Marine Bacterium Exiguobacterium sp. SBH81 and Its Tolerance Mechanism

نویسندگان

  • Ajiraporn Kongpol
  • Junichi Kato
  • Takahisa Tajima
  • Alisa S. Vangnai
چکیده

A Gram-positive marine bacterium, Exiguobacterium sp. SBH81, was isolated as a hydrophilic organic-solvent tolerant bacterium, and exhibited high tolerance to various types of toxic hydrophilic organic solvents, including acetonitrile, at relatively high concentrations (up to 6% [v/v]) under the growing conditions. Investigation of its tolerance mechanisms illustrated that it does not rely on solvent inactivation processes or modification of cell surface characteristics, but rather, increase of the cell size lowers solvent partitioning into cells and the extrusion of solvents through the efflux system. A test using efflux pump inhibitors suggested that secondary transporters, i.e. resistance nodulation cell division (RND) and the multidrug and toxic compound extrusion (MATE) family, are involved in acetonitrile tolerance in this strain. In addition, its acetonitrile tolerance ability could be stably and significantly enhanced by repetitive growth in the presence of toxic acetonitrile. The marked acetonitrile tolerance of Exiguobacterium sp. SBH81 indicates its potential use as a host for biotechnological fermentation processes as well as bioremediation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Genome Sequence of Exiguobacterium sp. Strain N4-1P, a Psychrophilic Bioemulsifier Producer Isolated from a Cold Marine Environment in North Atlantic Canada

Here, we present the complete genome sequence of Exiguobacterium sp. strain N4-1P, a psychrophilic bacterium that produces bioemulsifier, isolated for the first time from petroleum hydrocarbon-contaminated sediment samples from shoreline Newfoundland, Canada. Many strains of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest.

متن کامل

Draft Genome Sequence of Thermophilic Exiguobacterium sp. Strain JLM-2, Isolated from Deep-Sea Ferromanganese Nodules

Exiguobacterium sp. strain JLM-2 is a thermophilic bacterium isolated from deep-sea ferromanganese (FeMn) nodules. The estimated genome of this strain is 2.9 Mb, with a G+C content of 48.32%. It has a novel circular 15,570-bp plasmid. The draft genome sequence may provide useful information about Mn-microbe interactions and the genetic basis for tolerance to environment stresses.

متن کامل

Draft Genome Sequence of Haloalkaliphilic Exiguobacterium sp. AB2 from Manleluag Ophiolitic Spring, Philippines

Exiguobacterium sp. AB2 is a haloalkaliphilic bacterium isolated from a hyperalkaline spring in Manleluag, Pangasinan, Philippines. Sequencing of bacterial DNA assembled a 2.85 MB draft genome. Analysis suggests the presence of genes for tolerance to stresses such as elevated pH and salt concentrations and toxic metals.

متن کامل

Exiguobacterium enclense sp. nov., isolated from sediment.

A Gram-stain-positive bacterium, designated strain NIO-1109(T), was isolated from a marine sediment sample from Chorao Island, Goa, India. Phenotypic and chemotaxonomic characteristics and data from phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NIO-1109(T) was related to the genus Exiguobacterium . Strain NIO-1109(T) exhibited >98.0% 16S rRNA gene sequence similar...

متن کامل

Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1

Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2012